If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-7x-132=0
a = 1; b = -7; c = -132;
Δ = b2-4ac
Δ = -72-4·1·(-132)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{577}}{2*1}=\frac{7-\sqrt{577}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{577}}{2*1}=\frac{7+\sqrt{577}}{2} $
| –7t−9=9−9t | | 10x+4=180° | | /5x=9x-16 | | x×12=96 | | 4v+4=40 | | X+9/2=1/4x | | x+6x+3x=300 | | 5^2x+4=5-x | | 2x+3*2/5x=288 | | 52x+4=5^-x | | x+2/5x=288 | | x=0.416666666 | | 7x+10x-27=180 | | 3x=0.27 | | 3m=5(m+6)-3 | | y–15=6 | | 6(x+3)2x=26 | | 2.4=-5y+14.9 | | 5(x-1)=3(x+3)* | | x-4=3,x=-1,7,-7* | | 65=2.5d+-5 | | 65=2.5(d+-5) | | 8x−5+75+15=180 | | 15p=60p-p²/60×90 | | 2(u–18)=–18 | | 2x2−6x−10=0 | | 5{x+2}=20 | | 3x^-2x+3=x+3 | | 98=20w-2 | | 20=k(3)(5) | | X+5/2y=9 | | 98=20x-2 |